Sunday, May 11, 2008

Tomosynthesis

Digital tomosynthesis combines digital image capture and processing with simple tube/detector motion as used in conventional radiographic tomography - although there are some similarities to CT, it is a separate technique. In CT, the source/detector makes a complete 360 degree rotation about the subject obtaining a complete set of data from which images may be reconstructed. In digital tomosynthesis, only a small rotation angle with a small number of discrete exposures are used. This incomplete set of data can be digitally processed to yield images similar to conventional tomography with a limited depth of field. However, because the image processing is digital, a series of slices at different depths and with different thicknesses can be reconstructed from the same acquisition, saving both time and radiation exposure.
Because the data acquired is incomplete, tomosynthesis is unable to offer the extremely narrow slice widths that CT offers. However, higher resolution detectors can be used, allowing very-high in-plane resolution, even if the Z-axis resolution is poor. The primary interest in tomosynthesis is in breast imaging, as an extension to mammography, where it may offer better detection rates, with little extra increase in radiation exposure.
Reconstruction algorithms for tomosynthesis are significantly different from conventional CT, as the conventional filtered back projection algorithm requires a complete set of data. Iterative algorithms based upon expectation maximization are most commonly used, but are extremely computationally intensive. Some manufacturers have produced practical systems using commercial GPUs to perform the reconstruction.

No comments: